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Abstract

The dependence of an individual’s behavior on his affiliation with a group is often

suspected. Given a parametric model, the dependence of the behavior on the group

affiliation means the constancy of the model parameters across groups, which is often

tested by the Wald test (the Chow test), the Lagrange multiplier (LM) test, or the

generalized likelihood ratio (GLR) test. In this paper, we consider the familiar problem

of parameter constancy testing in the setup in which the population consists of many

groups, each of which offers only a few observations. The parameter constancy test in

such problem set up has not been studied at our best knowledge.

In our problem setup, the parameters cannot be accurately estimated for each

group, due to the small sample size of the group. This rules out use of the Wald and

GLR test. In the LM test, the Lagrange multiplier vector is a large vector consisting

of the average scores taken over each group. The small group sample sizes make the

normal approximation to the distribution of the Lagrange multiplier vector unreliable

and the weighting matrix in the LM test statistic very unstable. Thus, our problem

setup requires an approach different from the familiar large sample tests.

∗The author acknowledges support from the SSHRC Standard Research Grant Program.
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We assume that the researcher has a well-thought-out model in hand, which is

supposed to capture individuals’ behavior in all groups with a parameter value common

to all groups. Without having any expectation on the way how the parameter constancy

could be violated, he desires to test the hypothesis that the parameter of interest stays

the same across the groups against the alternative hypothesis that the parameter of

interest is unequal between at least one pair of groups.

This paper develops a novel test of parameter constancy that works in the above-

mentioned setup and studies its statistical properties in detail. Out test uses a statistic

obtained by taking a weighted average of an unbiasedly estimated quadratic form of

the group mean score, evaluated with the parameter estimate obtained imposing the

parameter constancy. Once suitably standardized, the test statistic is approximately

distributed with the standard normal distribution under the null hypothesis. Our test

rejects the null hypothesis when the standardized statistic exceeds the critical value

determined based on the standard normal approximation. The proposed test only

requires that an M -estimator accurately estimate the model parameters under the

null. The estimation of the parameter for each group is unnecessary. The sizes of

group samples can be as small as two for the proposed method to work. To illustrate

use of the proposed test, we apply the proposed method to test constancy of the wage

regression function across workplaces, using the Workplace and Employee Survey from

Statistics Canada.

Key Words: Score test; M -estimation; Workplace and Employee Survey

1. INTRODUCTION

The dependence of an individual’s behavior on his affiliation with a group is often suspected.

In a typical statistical analysis, an individual’s behavior is captured by the parameters in a

statistical model. If the individual’s affiliation does matter to his behavior, the parameters

should vary from one group to another. This paper proposes a method to test the constancy
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of the parameters across groups.

It has been been extensively studied how to test parameter constancy in various setups.

Most existing papers on this topic assume that many observations are available for each of

the groups. The large group sample sizes are essential for the Wald and generalized likelihood

ratio (GLR) tests, because they need an accurate estimate of the parameter for each group.

In the Lagrange multiplier (LM) test of the parameter constancy, the Lagrange multiplier

vector is a large vector consisting of the average scores taken over each group. The large

group sample sizes are again a key requirement. If the group sample sizes are small, the

normal approximation to the distribution of the Lagrange multiplier vector is unreliable.

Even worse, the estimated autocovariance matrix of the Lagrange multiplier vector, whose

inverse is the weighting matrix in the LM test statistic, is nearly or exactly singular.

Our paper, on the other hand, focuses on the situation in which the constancy of param-

eters across many groups is questioned, and only a small number of observations from each

group (as few as two observations) are available. A situation with many groups and small

group sample sizes can arise in two scenarios. In the first scenario, a researcher models the

behavior of individuals in the population, given a data set. The researcher then realizes that

affiliation with certain groups that form a fine partition of the population may matter for

the behavior of the individuals. For example, the researcher may be worried that a worker’s

behavior may be different from one workplace to another, or alternatively, a worker’s be-

havior may be affected by which high school he attended and when he graduated. In either

way, the population is split into many groups based on such factors, and each group would

have a small sample size. It would be useful for the researcher to have a test of parameter

constancy suitable in this case, because it allows him to check if he really needs to extend the

model to incorporate the possible effects of the groups before spending much of his precious

time.

In the second scenario, a researcher has a data set in hand, which contains a decent

number of observations as a whole but contains only a small number of observations per
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group. For instance, the data set may contain the information on individuals for studying

what affects propagation of human immunodeficiency virus. Trying to estimate a given model

satisfactorily for each group formed based on the gender, race, age, area of residence, etc., a

researcher may suspect that the parameters of interest could vary across the groups. If the

parameters are constant across groups, he could estimate the model satisfactorily with the

currently available data set; otherwise, he would need to spend his scarce financial resources

to collect more observations per group. In this scenario, it would be again useful to have a

suitable test of the parameter constancy.

We assume that the researcher has a well-thought-out model in hand, which is supposed

to capture individuals’ behavior in all groups with a parameter value common to all groups.

Without having any expectation on the way how the parameter constancy could be violated,

he desires to test the hypothesis that the parameter of interest stays the same across the

groups against the alternative hypothesis that the parameter of interest is unequal between

at least one pair of groups.

This paper develops a novel test of parameter constancy that works in the above-

mentioned setup and studies its statistical properties in detail. The proposed test uses a

statistic obtained by taking a weighted average of an unbiasedly estimated quadratic form of

the group mean score, evaluated with the parameter estimate obtained imposing the param-

eter constancy. Once suitably standardized, the test statistic is approximately distributed

with the standard normal distribution under the null hypothesis. Our test rejects the null

hypothesis when the standardized statistic exceeds the critical value determined based on

the standard normal approximation. The proposed test only requires that an M -estimator

accurately estimate the model parameters under the null. The estimation of the parameter

for each group is unnecessary. The sizes of group samples can be as small as two for the

proposed method to work.

The general theme of this paper is not new, as mentioned above. Chow (1960) proposes

a test of the equality of the set of coefficients of a classical linear regression model between
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two groups, imposing normality and homoskedasticity on the error terms. Fisher (1970)

gives some discussion on the technical aspect of the test of Chow (1960). The test is now

called the Chow test among economists. Also, Kullback and Rosenblatt (1957) consider how

to test the equality of linear regression parameters across multiple groups. Toyoda (1974)

studies how the Chow test is affected if the error term has different variances between the

two groups. Weerahandi (1987) provides a remedy to the problem in the Chow test caused

by unequal variances of the error term between the two groups.

Dufour (1982) considers an interesting generalization of the Chow test. Pointing out that

the group sample sizes can be smaller than the number of the regressors in some applications,

he demonstrates how the Chow test could be modified to handle the case with small group

sample sizes. The problem setup of Dufour (1982) is similar to ours in this sense. Nonetheless,

Dufour’s analysis heavily depends on the normality of the error term. Also, it does not seem

to extend to any models beyond the linear regression model. Our approach, on the other

hand, readily covers a wide range of situations and does not rely on stringent assumptions

such as the normality of the error distribution. The generality of our method, however, does

not come free. First, our approach is only justified by the large sample theory, unlike Dufour’s

method whose finite sample property is known under the assumed conditions. Second, our

approach does require that the number of groups be large, unlike Dufour’s approach.

Pesaran and Yamagata (2008) is another work related to the current paper. It considers

a test of parameter constancy across individuals in the panel analysis. If we label groups as

“individuals” and individuals in each group as “time periods for the individual”, the model

considered in our analysis looks like a panel model. In this view, Pesaran and Yamagata

(2008) and the current paper are considering similar problems. Nevertheless, the translated

version of our problem assumes a short panel (with a small number of time periods per

individual), while the method proposed by Pesaran and Yamagata (2008) treats long panels,

even though they focus on the situation with small numbers of periods per individual relative

to the number of individuals. The long panel setup allows them to estimate the parameters
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of interest for each individual (each group in our problem) separately with decent accuracy,

while estimation of the parameters per individual (i.e., per group) is out of question in our

problem setup. Thus, their approach is inapplicable in the problem considered in the current

paper, while our approach might not be effective in their problem setup.

The rest of the paper is organized as follows. In Section 2, we precisely define the null

hypothesis of interest and show an implication of the null hypothesis on the group mean

scores. In Section 3, we propose a method to test the null hypothesis and derive its large

sample properties. In Section 4, we conduct Monte Carlo simulations to assess the finite

sample performance of the proposed test. We also provide an example to illustrative use of

the proposed method in Section 5. We then conclude the paper with remarks in Section 6.

The proofs of theorems are collected in the Appendices.

We employ the following convention and symbols throughout this paper. Limits are taken

along the sequence of numbers of groups (denoted G) growing to infinity, unless otherwise

indicated. For each matrix A, |A| denotes the Frobenius norm of A, i.e., |A| ≡
√

tr(A′A),

and A+ the Moore-Penrose (MP) inverse of A. By applying the MP inverse in division by

scalars, we rule that division by zero equals zero. We use the MP inverses of random square

matrices instead of the regular inverses to avoid technical problems caused by the singularity

of the random matrices that occurs with a low probability. The reader can safely replace the

MP inverses with the regular inverses, when applying the formulas in this paper in practice.

2. NULL HYPOTHESIS

Suppose that there are G groups in the population under study. We have a random sample

from each of the G groups. The size of the sample from group g is denoted ng. The size of

the whole sample is thus NG ≡ ∑G
g=1 ng. The ith observation from group g is denoted Xgi,

which is v×1. For each group g, the parameter of interest θ†g is characterized as a maximizer

of q̄g(θ) ≡ E[qg(Xg1, θ)] with respect to θ over a parameter space Θ, where qg is a known
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function.

Example 2.1 Partition Xgi as Xgi = (Ygi, Z
′
gi)

′, where Ygi is a random variable, and Zgi is

a (v − 1) × 1 random vector (v ≥ 2). Assume that

Ygi = Z ′
giθ

†
g + Ugi, i = 1, 2, . . . , ng, g = 1, 2, . . . , G,

where θ†g ∈ Θ = R
v−1; and E[Ug1|Zg1] = 0 (the conditional mean restriction) or E[Zg1Ug1] = 0

(exogeneity). Then θ†g is a maximizer of q̄g(θ) ≡ E[qg(Xg, θ)], where for each x = (y, z′)′ ∈

R × R
v−1, each θ ∈ Θ, and each g ∈ {1, 2, . . . , G},

qg(x, θ) ≡ −(y − z′θ)2.

Example 2.2 The random variable Xgi is partitioned in the same way as in Example 2.1,

and Ygi is a binary random variable. Assume that

P [Ygi = 1 |Zgi] = Φ(Z ′
giθ

†
g), i = 1, 2, . . . , ng, g = 1, 2, . . . , G,

where θ†g ∈ Θ ⊂ R
v−1, and Φ is the standard normal cdf. Then θ†g is a maximizer of q̄g(θ) ≡

E[qg(Xg1, θ)], where for each x = (y, z′)′ ∈ R×R
v−1, each θ ∈ Θ, and each g ∈ {1, 2, . . . , G},

qg(x, θ) ≡ y log Φ(z′θ) + (1 − y) log(1 − Φ(z′θ)).

Example 2.3 The random variable Xgi is partitioned in the same way as in Example 2.1,

and Ygi is a count variable. Assume that

P [Ygi = 1 |Zgi] = exp(Z ′
giθ

†
g), i = 1, 2, . . . , ng, g = 1, 2, . . . , G, (1)

where θ†g ∈ Θ ⊂ R
v−1. Then θ†g is a maximizer of q̄g(θ) ≡ E[qg(Xg1, θ)], where for each
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x = (y, z′)′ ∈ R × R
v−1, each θ ∈ Θ, and each g ∈ {1, 2, . . . , G},

qg(x, θ) ≡ − exp(z′θ) + yz′θ.

Here, qg is obtained from the log-likelihood function of the Poisson regression model, dropping

the term that does not depend on θ. The validity of this choice of qg to characterize θ†g only

requires (1). It holds even if Ygi is not conditionally distributed with the Poisson distribution

given Zgi. See Gouriéroux et al. (1984).

The null hypothesis we attempt to test is that H0: θ†1 = θ†2 = · · · = θ†G. Because we are

considering the situation in which a researcher has a well-thought-out model in hand, the

researcher should not expect that H0 can be violated in any particular manner (if he did, he

would have already incorporated it into the model). The alternative hypothesis is therefore

the violation of the equalities in H0 in any form, i.e., at least between one pair of groups, g1

and g2, θ†g1
�= θ†g2

.

We consider how to test H0 in the situation with a large G and small ng’s. Our asymptotic

analysis incorporates this feature via the large-G asymptotics, in which the sequence {ng}g∈N

is bounded. As is the case in most asymptotic analysis, our asymptotics is a fiction used

for approximating various finite sample phenomena. Given the likely heterogeneity across

groups, however, we do not have a natural and simple mechanism to create more and more

groups together with their population distributions. In this sense, our large-G asymptotics

is more fictional than the familiar ones. Some of the assumptions made in this paper are not

verifiable for this reason.

The basic setup for our large sample analysis is formalized in the following assumption.

Assumption 1 (a) The sequence {ng ∈ N}g∈N satisfies that for each g ∈ N, 2 ≤ ng ≤ n̄,

where n̄ is a natural number. The data are a realization of an independent, rowwise

identically distributed double array of v × 1 random vectors {Xgi : i ∈ Ig, g ∈ N} on a

probability space (Ω,F , P ), where Ig ≡ {i ∈ N : i ≤ ng} for each g ∈ N.
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(b) Θ is a subset of R
p, and {qg : R

v × Θ → R}g∈N is a sequence of functions measurable-

(Bv ⊗ B(Θ))/B such that for each g ∈ N and each x ∈ R
v, qg(x, ·) : Θ → R is twice

continuously differentiable.

(c) For each g ∈ N and each θ ∈ Θ,

E[|qg(Xg1, θ)|] + E[|∇qg(Xg1, θ)|] < ∞,

and

∇E[qg(Xg1, θ)] = E[∇qg(Xg1, θ)],

where ∇ denotes the gradient operator with respect to the parameters.

(d) For almost all G ∈ N, Q̄G : Θ → R defined by

Q̄G(θ) ≡ E

[
N−1

G

G∑
g=1

ng∑
i=1

qg(Xgi, θ)

]

= N−1
G

G∑
g=1

ngq̄g(θ), θ ∈ Θ, G ∈ N (2)

has a unique maximizer θ∗G ∈ Θ, where NG ≡ ∑G
g=1 ng, G ∈ N.

The requirement in Assumption 1(a) that {Xgi} be rowwise identically distributed is

satisfied if observations are drawn from each group by simple random sampling. The dif-

ferentiability imposed in Assumption 1(b) is mild, though it clearly rules out the quantile

regression analysis Koenker and Bassett (1978), in which qg would be a “check function”

of the regression residual. The moment conditions imposed in Assumption 1(c) are weaker

than those typically employed in proving the asymptotic normality of the M -estimator de-

fined to be a maximizer of the average of qg(Xgi, θ) taken over the entire sample. The

interchangeability of the gradient operator and the expectation operator is also innocuous.
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Under H0, q̄g is maximized at the same parameter value, and so is Q̄G defined in (2). It

follows that for each G ∈ N, θ∗G = θ†1 = · · · = θ†G under H0. Assumption 1(d) requires that the

uniqueness of θ∗G also hold under the alternative. Under suitable additional assumptions, the

pseudo-true parameter θ∗G can be consistently estimated by the M -estimator that maximizes

the average of qg(Xgi, θ) taken over the entire sample, which appears in the square brackets

in (2), while θ†g is not estimable for each g ∈ N, given the boundedness of {ng}. Note that we

do not require that the maximizer of q̄g be unique for each g ∈ N. This allows for situations

in which θ†g is not unique for some groups, due to some variables taking on the same values

over a group (e.g., an indicator variable for a region, to which some groups belong).

Because q̄g is maximized at θ∗G for each group g ∈ N under H0, we have that under H0,

E[∇qg(Xg1, θ
∗
G)] = 0 for each (g,G) ∈ G ≡ {(g,G) ∈ N

2 : g ≤ G}, by the first order

condition for the maximization of q̄g. On the other hand, E[∇qg(Xq1, θ
∗
G)] is likely to be

nonzero, when H0 does not hold, though it is not impossible for it to be zero, as θ∗G can

happen to be a local maximum or a saddle point of q̄g.

We construct a test of H0 based on whether or not the data indicates that E[∇qg(Xg1, θ
∗
G)] �=

0. We allow the test to focus on a subvector of E[∇qg(Xg1, θ
∗
G)], if the user desires so. With-

out loss of generality, we assume that the user chooses the first m elements (0 < m ≤ p).

Define {sgi : Ω × Θ → R
m : i ∈ Ig, g ∈ N} by

sgi(·, θ) ≡ ∇θ1qg(Xgi, θ), θ ∈ Θ, i ∈ Ig, g ∈ N,

where ∇θ1 denote the operator of the partial differentiation with respect to θ1, the first m

components of θ. Also write

s∗Ggi ≡ sgi(·, θ∗G), i ∈ Ig, (g, G) ∈ G.

Then it holds that E[s∗Gg1] = 0 for each (g,G) ∈ G under H0.

10



A challenge is that E[s∗Gg1] cannot be estimated well, given that the size of each group

sample is small. Its averaged version, N−1
G

∑G
g=1 ngE[s∗Gg1], is also useless, because it is equal

to zero, whether or not H0 is true, and so is its sample counterpart.

3. FORMULATION OF A TEST

We now state a key fact used in our construction of a test of H0. Let S
m denote the set of

all m × m symmetric matrices. Assume:

Assumption 2 (a) The sequence {WG ∈ S
m}G∈N is bounded.

(b) The sequence {WG}G∈N is uniformly positive definite.

Then for each (g, G) ∈ G, E[s∗Gg1]
′WGE[s∗Gg1] ≥ 0; and E[s∗Gg1]

′WGE[s∗Gg1] = 0 if and only if

E[s∗Gg1] = 0. It follows that α∗
G ≡ αG(θ∗G,WG) is nonnegative, where

αG(θ, W ) ≡ N−1
G

G∑
g=1

ngE[sg1(·, θ)]′WE[sg1(·, θ)]

= N−1
G

G∑
g=1

ngtr(WE[sg1(·, θ)]E[sg1(·, θ)]′), θ ∈ Θ, W ∈ S
m; (3)

and α∗
G = 0 if and only if E[s∗Gg1] = 0. Thus, it holds that α∗

G = 0 under H0. We base our

test on this simple fact. Namely, our test rejects H0 if an estimate of α∗
G is positive and far

from zero.

Our formulation of a test of H0 requires consistent estimation of α∗ (in the large-G asymp-

totics). We first consider how to estimate αG(θ, W ) with fixed θ ∈ Θ and W ∈ S
m. Note

that αG(θ,W ) is a weighted sum of tr(WE[sg1(·, θ)]E[sg1(·, θ)]′) over the first G groups. If we

can estimate tr(WE[sg1(·, θ)]E[sg1(·, θ)]′) unbiasedly for each g ∈ N, plugging the unbiased

estimator into tr(WE[sg1(·, θ)]E[sg1(·, θ)]′) in (3) generates an estimator that converges to

αG(θ,W ) in probability-P by the law of large numbers for independent but not identically

distributed processes.
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For the unbiased estimation of tr(WE[sg1(·, θ)]E[sg1(·, θ)]′), we use the fact that

E[sg1(·, θ)]E[sg1(·, θ)]′ = E[sg1(·, θ)sg1(·, θ)′] − var[sg1(·, θ)], (g,G) ∈ G. (4)

We know that the sample second moment and sample covariance matrix of sg1(·, θ) taken over

the observations from the gth group unbiasedly estimate E[sg1(·, θ)sg1(·, θ)′] and var[sg1(·, θ)],

respectively. Plugging them into the right-hand side of (4) yields an unbiased estimator of

E[sg1(·, θ)]E[sg1(·, θ)]′, with which we can also estimate tr(WE[sg1(·, θ)]E[sg1(·, θ)]′) unbias-

edly.

Define {s̃g : Ω × Θ → R
m}g∈N by

s̃g ≡ n−1
g

ng∑
i=1

sgi, g ∈ N.

Also, define ŠG : Ω × Θ → R
m×m and Σ̌G : Ω × Θ → R

m×m by

ŠG(·, θ) ≡ N−1
G

G∑
g=1

ng∑
i=1

sgi(·, θ)sgi(·, θ)′, θ ∈ Θ, G ∈ N and

Σ̌G(·, θ) ≡ N−1
G

G∑
g=1

(
ng

ng − 1

×
ng∑
i=1

(sgi(·, θ) − s̃g(·, θ))(sgi(·, θ) − s̃g(·, θ))′
)

, θ ∈ Θ, G ∈ N.

Then the consistent estimator α̌G(·, θ,W ) : Ω → R of αG(θ,W ) is

α̌G(·, θ,W ) ≡ tr(WG(ŠG(·, θ) − Σ̌G(·, θ))), θ ∈ Θ, G ∈ N. (5)

Given α̌G(·, θ,W ), it is natural to replace θ with an estimator θ̂G of θ∗G and W with WG

to obtain an estimator of α∗
G. Also, one may want to use a data-dependent weighting matrix
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ŴG in place of WG in the actual implementation of this estimation strategy. We assume:

Assumption 3 (a) The sequence {θ̂G : Ω → Θ}G∈N consists of Θ-valued random vectors

on (Ω,F , P ) such that for each G ∈ N, QG(·, θ̂G) = supθ∈Θ QG(·, θ), where QG : Ω ×

Θ → R is defined by

QG(·, θ) ≡ N−1
G

G∑
g=1

ng∑
i=1

qg(Xgi, θ), θ ∈ Θ, G ∈ N.

The sequence {|θ̂G − θ∗G|}G∈N converges to zero in probability-P .

(b) The sequence of random matrices, {ŴG : Ω → S
m}G∈N, satisfies that {|ŴG −WG|}G∈N

converges to zero in probability-P .

The consistency of {θ̂G} for {θ∗G} imposed in Assumption 3(a) is a high-level assumption.

We employ it in our analysis to keep the results of the current paper widely applicable. The

required consistency is usually not difficult to verify. The framework described in White

(1994, Chapter 3), for example, can handle many cases including the setup of Example 2.2.

Nevertheless, such framework is not universally applicable. The compactness on the param-

eter space imposed in the framework rules out the setup of Example 2.1 with Θ = R
v−1,

despite that Assumption 3 holds in Example 2.1 if {Xg1}g∈N is uniformly L2+δ-bounded for

some real number δ > 0, and {N−1
G

∑G
g=1 ngE[Xg1X

′
g1]} is asymptotically uniformly positive

definite. Assumption 3(a) let us avoid binding our results to a single set of assumptions

employed in the consistency proof.

The convergence of {α̌G(·, θ,W )−αG(θ, W )}G∈N in probability to zero for each (θ, W ) ∈

Θ × S
m discussed above can be extended to the convergence uniform in (θ,W ) in each

compact subset of Θ × S
m under the assumptions imposed below. Our estimator {α̂G ≡

α̌G(·, θ̂G, ŴG)}G∈N is thus consistent for {α∗
G}G∈N under the assumptions. We can also es-

tablish the large sample distribution of {α∗
G}G∈N using the standard techniques. We now

impose the additional conditions to study the large sample behavior of {α̂G}.
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Assumption 4 There exists a compact subset Θ0 of Θ that satisfies the following conditions.

(a) The sequence {θ∗G}G∈N is uniformly interior to Θ0.

(b) For some θ0 ∈ Θ0, {|∇2qg(Xg1, θ0)|}g∈N is uniformly L2+2δ-bounded for some real

number δ > 0, where ∇2 is the Hessian operator with respect to the parameters. There

exists a continuous function h : R → [0,∞) such that h(y) ↓ 0 as y ↓ 0 and a Borel

measurable function d1 : R
v → R such that the sequence {d1(Xg1)}g∈N is uniformly

L2+2δ-bounded, and for each (θ1, θ2) ∈ Θ2
0 and each x ∈ R

v,

|∇2qg(x, θ2) −∇2qg(x, θ1)| ≤ d1(x)h(|θ2 − θ1|), g ∈ N.

(c) The sequence {A∗
G ≡ AG(θ∗G)}G∈N is asymptotically uniformly nonsingular, where

AG(θ) ≡ N−1
G

G∑
g=1

ngE[∇2qg(Xg1, θ)], θ ∈ Θ, G ∈ N.

(d) For some θ0 ∈ Θ0, {|∇qg(Xg1, θ0)|}g∈N is uniformly L4+4δ-bounded, there exists a Borel

measurable function d2 : R
v → R such that {d2(Xg1)}g∈N is uniformly L4+4δ-bounded,

and for each (θ1, θ2) ∈ Θ2
0 and each x ∈ R

v,

|∇qg(x, θ2) −∇qg(x, θ1)| ≤ d2(x)h(|θ2 − θ1|), g ∈ N,

where h is as in (b).
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(e) The array {var[ξ∗Gg] : (g, G) ∈ G} is uniformly positive, where

ξ∗Gg ≡ G

NG

(
tr

(
WG

( ng∑
i=1

s∗Ggis
∗
Ggi

′

− ng

ng − 1

ng∑
i=1

(s∗Ggi − s̃∗Gg)(s
∗
Ggi − s̃∗Gg)

′
))

− ngE[s∗Gg1]
′WE[s∗Gg1]

− L∗
G
′A∗

G
−1

ng∑
i=1

∇qg(Xgi, θ
∗
G)

)
, (g, G) ∈ G,

s̃∗Gg ≡ s̃g(·, θ∗G), L∗
G ≡ LG(θ∗G,WG), and

LG(θ, W ) ≡ 2N−1
G

G∑
g=1

E

[
− 1

ng − 1

ng∑
i=1

∇sgi(·, θ)Wsgi(·, θ)

+
n2

g

ng − 1
∇s̃g(·, θ)Ws̃g(·, θ)

]
, θ ∈ Θ, W ∈ S

m.

The conditions imposed in Assumptions 4(a)–(d) are similar to those typically imposed in

establishing the asymptotic normality of M-estimators, except that the orders in the moment

conditions in Assumption 4 are higher, reflecting the fact that our statistic involves products

of elements of sgi(·, θ̂) and ∇sgi(·, θ̂). We now state the large sample properties of {α̂G}.

Theorem 3.1 Suppose that Assumptions 1–4 hold. Then:

(a) α̂G − α∗
G → 0 in probability-P .

(b) If α∗
G = O(G−1/2), then

G1/2(α̂G − α∗
G) = G−1/2

G∑
g=1

ξ∗Gg + oP (1) and (6)

V
−1/2
G G1/2(α̂G − α∗

G)
A∼ N(0, 1), where (7)
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VG ≡ G−1

G∑
g=1

var[ξ∗Gg], G ∈ N.

Given the result of Theorem 3.1, we now make the “t-statistic” for α∗
G. To formulate an

estimator of VG, we approximate ξ∗Gg by

ξ̂Gg ≡ G

NG

(
ng∑
i=1

tr

(
ŴG

( ng∑
i=1

sgi(·, θ̂G)sgi(·, θ̂G)′

− ng

ng − 1

ng∑
i=1

(sgi(·, θ̂G) − s̃g(·, θ̂G))(sgi(·, θ̂G) − s̃g(·, θ̂G))′
))

− L̂′
GÂ+

G

ng∑
i=1

∇qg(Xgi, θ̂G)

)
, (g, G) ∈ G, where

L̂G ≡ 2N−1
G

G∑
g=1

(
− 1

ng − 1

ng∑
i=1

∇sgi(·, θ̂G)ŴGsgi(·, θ̂)

+
n2

g

ng − 1
∇s̃g(·, θ̂G)ŴGs̃g(·, θ̂G)

)
, G ∈ N and

ÂG ≡ N−1
G

G∑
g=1

ng∑
i=1

∇2qg(Xgi, θ̂G), G ∈ N.

We then estimate VG by

V̂G ≡ G−1

G∑
g=1

ξ̂2
Gg, G ∈ N.

Our test statistic is thus

TG ≡ G1/2α̂n

V̂
1/2
G

, G ∈ N. (8)

The large sample behavior of this statistic is described in the next theorem.

Theorem 3.2 Under Assumptions 1, 2(a), 3, and 4, the following hold.
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(a) The sequence

{
V̄G ≡ G−1

G∑
g=1

var[ξGg] + G−1

G∑
g=1

(
Gng

NG

)2

(E[s∗Gg1]
′WGE[s∗Gg1])

2

}
G∈N

is bounded, and {V̂G − V̄G}G∈N converges to zero in probability-P .

(b) If in addition Assumption 2(b) hold, and α∗
G = O(G−1/2), then |V̂G − VG| → 0 in

probability-P , and

TG − G1/2α∗
G

V
1/2
G

A∼ N(0, 1).

(c) If {α∗
G}G∈N is asymptotically uniformly positive, then for each c ∈ R, P [TG > c] → 1.

Theorem 3.2 shows that, to perform a level-π test of H0, we can set the (1−π)-quantile of

the standard normal distribution to the critical value. It also shows that the test has a power

approaching 1 as G → ∞, under the asymptotic uniform positiveness of {α∗
G}, which holds,

for example, if |E[s∗Gg1]| is bounded away from zero for some fixed fraction of individuals in

the population, when G grows to infinity. On the other hand, the test does not have much

power, if α∗
G is small. For instance, if the variation of θ†g across groups is small, |E[s∗Gg1]|

would be small in most groups, so that α∗
G would be small. Also, if all but only a few groups

share the same value for θ†g, |E[s∗Gg1]| would be small in most groups, and α∗
G would be small.

Without knowing specifically how the null hypothesis could be violated, it seems difficult to

improve the power in such cases.

In using the proposed test, one has to choose the weighting matrix ŴG. Use of Σ̂+
G ≡

Σ̌G(·, θ̂G) or Ŝ+
G ≡ Σ̌G(·, θ̂G) for ŴG can be recommended, because these choices make the

proposed test invariant to reparametrization of the model, at least, within the set of m

parameters corresponding to the m components of the score vector used in the test, provided

that the model reparametrized through a continuously differentiable mapping whose Jacobian

is nonsingular everywhere. By using Lemma A.4 with Assumption 4(d) and Lemma B.2, it
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is straightforward to show that {Σ̂G}G∈N and {ŜG}G∈N are respectively consistent for

{
Σ∗

G ≡ N−1
G

G∑
g=1

n2
g

ng − 1
E[(s∗g1 − E[s∗g1])(s

∗
g1 − E[s∗g1])

′]
}

G∈N

and

{
S∗

G ≡ N−1
G

G∑
g=1

ngE[s∗g1s
∗
g1

′]
}

G∈N

,

both of which are O(1). It follows that setting Σ̂+
G or Ŝ+

G to ŴG satisfies Assumptions 2 and

3(b), provided that {Σ∗
G}G∈N is asymptotically uniformly positive definite.

4. MONTE CARLO SIMULATIONS

In this section, we examine the finite sample behavior of the proposed test. Let {Zgi :

i ∈ Ig, g ∈ N} be an independently and identically distributed array of 4× 1 random vectors

such that the first component of Zgi is identically equal to one, and the remaining three

components are independently distributed with the standard normal distribution. Also, let

{εgi : i ∈ Ig, g ∈ N} be an independent array of random variables that are distributed with

the standard normal distribution. The arrays {Zgi} and {εgi} are independent. In each

experiment, we pick a 4 × 1 constant vector θ̄ and set θ̂†g = (−1)gθ̄ for each group g. We

then generate {Ygi : i ∈ Ig, g ∈ N} by

Ygi ≡ Z ′
giθ

†
g + Ugi, i ∈ Ig, g ∈ N,

where for some real numbers γ0 > 0 and γ1 ≥ 0,

Ugi ≡ (γ0 + γ1Z
2
gi2)

1/2εgi,

and Zgi2 is the second component of Zgi. By construction, we have that for each g ∈ N,

E[Ug1|Zg1] = 0. The parameter θ†g can be characterized as the maximizer of q̄(θ), where q̄ is
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Table 1: Probability of rejection, G = 50, ng = 5

Rejection Probability (%), G = 50, ng = 5

θ̄
Homoskedastic Heteroskedastic

10% 5% 1% 10% 5% 1%
(0,0,0,0)’ 9.0 3.7 0.4 8.9 3.7 0.3

(0.05,0,0,0)’ 9.4 3.9 0.4 9.6 3.8 0.4
(0.1,0,0,0)’ 10.7 4.8 0.7 11.0 4.6 0.6
(0.2,0,0,0)’ 18.0 9.0 1.3 19.4 9.3 1.3
(0.3,0,0,0)’ 34.9 20.5 4.7 37.2 22.7 4.9
(0.4,0,0,0)’ 61.5 44.4 15.5 64.1 47.8 18.2
(0.5,0,0,0)’ 86.1 74.9 42.1 87.3 77.6 46.7
(0.6,0,0,0)’ 97.6 94.0 76.3 98.0 94.9 78.8
(0,0.05,0,0)’ 9.4 3.9 0.4 9.0 3.7 0.3
(0,0.1,0,0)’ 10.9 4.6 0.5 9.8 4.0 0.4
(0,0.2,0,0)’ 17.2 8.0 1.1 12.9 5.4 0.6
(0,0.3,0,0)’ 29.0 16.1 2.5 18.5 9.1 1.1
(0,0.4,0,0)’ 47.0 29.3 7.1 27.5 14.5 2.1
(0,0.5,0,0)’ 65.6 47.9 15.4 40.8 23.6 4.7
(0,0.6,0,0)’ 81.3 66.2 27.4 55.8 36.8 9.4

as in Example 2.1. We thus employ the ordinary least squares (OLS) estimator for θ̂G.

In each experiment, we set the group sample size gn equal to 5 for all groups and set

G equal to an even natural number. In generating Ugi, we set either (γ0, γ1) = (1, 0) (ho-

moskedastic experiments) or (γ0, γ1) = (0.5, 0.5) (heteroskedastic experiments). This makes

the variance of Ugi is one throughout all experiments. It is straightforward to verify that

θ∗G = 0, regardless of the value of θ̄. To assess the effects of nonconstancy of the intercept and

that of slopes separately, we set θ̄ = (a, 0, 0, 0)′ in some experiments and θ̄ = (0, a, 0, 0)′ in

others, where a is a nonnegative real number, which can be interpreted as the magnitude of

the variation of the parameters across groups relative to the standard deviation of the error

term (which is one). We below tabulate the probability that the proposed test rejects the

null hypothesis in experiments with various θ̄ and G. The number of replications is 10,000

in each experiment, the standard errors of the reported probabilities are no larger than 0.5

per cent points (=
√

0.52/10, 000).
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Table 2: Probability of rejection, G = 100, ng = 5

Rejection Probability (%), G = 100, ng = 5

θ̄
Homoskedastic Heteroskedastic

10% 5% 1% 10% 5% 1%
(0,0,0,0)’ 9.7 4.8 0.7 10.0 4.8 0.8

(0.05,0,0,0)’ 10.3 5.1 0.8 10.7 5.2 0.9
(0.1,0,0,0)’ 12.6 6.2 1.2 13.2 6.5 1.1
(0.2,0,0,0)’ 24.7 13.8 3.2 25.6 14.7 3.4
(0.3,0,0,0)’ 51.7 36.0 12.8 53.4 38.0 14.0
(0.4,0,0,0)’ 83.5 72.5 42.5 84.6 74.5 45.4
(0.5,0,0,0)’ 98.4 95.6 83.0 98.3 95.8 84.0
(0.6,0,0,0)’ 100.0 99.9 98.8 99.9 99.8 98.6
(0,0.05,0,0)’ 10.1 5.2 0.9 10.3 4.9 0.8
(0,0.1,0,0)’ 12.4 6.1 1.1 11.3 5.6 0.9
(0,0.2,0,0)’ 23.3 12.2 2.9 15.7 8.3 1.5
(0,0.3,0,0)’ 43.5 28.7 8.1 25.8 14.1 3.0
(0,0.4,0,0)’ 69.1 53.2 23.0 41.4 26.3 6.9
(0,0.5,0,0)’ 88.5 78.0 46.3 60.2 44.1 15.8
(0,0.6,0,0)’ 96.9 92.4 71.0 77.9 63.9 30.8

Table 3: Probability of rejection, G = 500, ng = 5

Rejection Probability (%), G = 500, ng = 5

θ̄
Homoskedastic Heteroskedastic

10% 5% 1% 10% 5% 1%
(0,0,0,0)’ 10.0 4.9 0.9 10.0 5.0 0.8

(0.05,0,0,0)’ 11.5 5.9 1.2 11.3 6.0 1.1
(0.1,0,0,0)’ 17.4 9.5 2.2 17.5 9.5 2.0
(0.2,0,0,0)’ 53.7 38.8 15.8 54.4 39.1 16.1
(0.3,0,0,0)’ 95.5 90.7 73.6 95.3 90.8 74.6
(0.4,0,0,0)’ 100.0 100.0 99.7 100.0 100.0 99.7
(0.5,0,0,0)’ 100.0 100.0 100.0 100.0 100.0 100.0
(0.6,0,0,0)’ 100.0 100.0 100.0 100.0 100.0 100.0
(0,0.05,0,0)’ 11.5 6.0 1.1 10.7 5.5 0.9
(0,0.1,0,0)’ 17.1 9.3 2.1 13.2 6.9 1.3
(0,0.2,0,0)’ 48.8 34.6 13.4 26.4 15.9 4.4
(0,0.3,0,0)’ 90.2 82.1 57.0 55.7 40.2 16.1
(0,0.4,0,0)’ 99.8 99.4 95.5 86.2 76.2 49.2
(0,0.5,0,0)’ 100.0 100.0 100.0 98.5 96.4 85.6
(0,0.6,0,0)’ 100.0 100.0 100.0 100.0 99.8 98.7
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Table 1 shows the probability of rejection in experiments with G = 50 and ng = 5. The

left three columns report the rejection probabilities of the test with nominal sizes 10%, 5%,

and 1% in the homoskedastic experiments, while the right three columns do the same for

the heteroskedastic experiments. The experiments with θ̄ = (0, 0, 0, 0)′ shows that the test

has sizes close to the nominal sizes, though the test tends to somewhat underreject the null

hypothesis. The second and third panes of the table show that the power steadily climbs

up as the variation of θ†g across the groups becomes larger. Tables 2 and 3 show that with

larger G’s, the sizes of the test become even closer to the nominal sizes, and the slope of the

power curve becomes steeper, as our large sample theory suggests.

5. AN ILLUSTRATIVE EXAMPLE

To assess the effects of schooling and job experience of a worker on his wage, the linear regres-

sion of wage in logarithm on years of schooling, years of experience, and other characteristics

of the worker is often estimated. If such a regression model properly accounts for all impor-

tant determinants of the wage rate, the effects of the determinants on the wage rate should

be the same at every workplace in the population. If we find that the regression parameters

vary from a workplace to another, the model still has a space for improvement, omitting

some determinants of the wage rate. In this section, we apply the proposed method to test

the constancy of the parameters of a particular wage regression model across workplaces in

Canada.

The data set we use in this section is Workplace and Employee Survey (WES) 1999

from Statistics Canada. The WES offers the information on workplaces in Canada and the

employees at the workplaces. The information on the employees includes the identification

number for each employee’s workplace as well as the wage rate, schooling, years of job

experience, seniority, ethnicity, gender, marital status, union membership, and occupation

type of each employee.
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Figure 1: Frequency of work place sample size in the Workplace and Employee Survey 1999
* No more than 21 observations were drawn from any workplace.

The WES 1999 is a large data set containing observations of 23,540 employees from 5,733

workplaces in Canada. Nevertheless, the workplace sample size (i.e. the number of workers

sampled from a workplace) ranges between one and 21 and averages only 4.11. Figure 1 shows

the frequency of the workplace sample sizes across the 5,733 workplaces. The sample only

offers six or fewer observations for 90% of the workplaces and more than ten observations only

for 0.6% of the workplaces. Thus, the WES 1999 contains many workplaces but only a few

observations from each of the workplaces, as we assumed in developing our test method. In

our analysis, we drop the 636 workplaces with only one observation, as our method requires

two or more observations from each workplace.
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Table 4: Wage regression function estimated by using the Workplace and Employee Survey
1999

Regressor Estimate Standard Error
Highest grade completed up to high school 0.0269 0.00206
Additional education and trainng (binary varaibles)

Trade-vocational training 0.0491 0.00758
Some college 0.0328 0.00852
Completed college 0.0745 0.00672
Some university 0.069 0.0104
Teacher’s college 0.0128 0.0563
University below B.Sc. 0.134 0.0198
B.Sc. 0.234 0.00919
University above B.Sc. 0.195 0.0224
M.Sc. 0.186 0.0178
Degree in medicine 0.215 0.0445
Ph.D 0.152 0.0528
Industry certified training or course 0.0515 0.0116
Others 0.0276 0.013

Years of experience 0.0222 0.000901
Years of experience squared −3.98 · 10−4 2.17 · 10−5

Seniority 9.92 · 10−4 4.56 · 10−5

Black (binary variable) -0.0706 0.0312
Female (binary variable) -0.157 0.00592
Married (binary variable) 0.072 0.00573
Union membership (binary variable) 0.0848 0.00567
Occupation groups (binary varaibles)

Managers 0.478 0.0137
Professionals 0.402 0.013
Technical or Trades 0.174 0.0105
Marketing or Sales -0.0648 0.0181
Clerical or Administrative 0.0865 0.0115

Intercept 1.95 0.0254
R2 0.369

(a) The column labeled “Standard Error” shows the heteroskedasticity-robust estimate of
the standard error for each parameter estimate.

(b) The occupation groups are exhaustive and mutual exclusive categorization. The
base group, which is ommitted from the regression, is “Production workers with no
trade/certification, operation and maintenance”.
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Table 4 reports the regression of the log-wage on schooling, experience, seniority, occu-

pation type, and some other individual characteristics, estimated by the OLS method using

the WES 1999. Note that the number of parameters in the regression model exceeds the

workplace sample size at most workplaces, so that it is clearly infeasible to estimate the

particular regression model for each of the workplaces separately. The estimates in the table

qualitatively agree with those found in similar regressions in the literature. All schooling

and training variables have positive effects on the wage rate. Years of experience also have

positive effects with the decreasing marginal return. Seniority has a tiny positive effect,

which is yet statistically significant. The marriage and union membership affect the wage

rate positively, while the black and female dummies have negative coefficients. For the oc-

cupation dummies, we see that the coefficients are in line with the skill levels required for

the occupation groups. The estimated regression function exhibits no obvious problems.

We now apply the method proposed in this paper to test the hypothesis that the coef-

ficients stay the same across workplaces. Using the entire score for sgi and Σ̂+
G for ŴG, the

realized value of TG is 15.56. The null hypothesis is strongly rejected. It seems that there is

still a space for improvement in the regression specification used above.

Unfortunately, the rejection of a model in this form does not tell a researcher specifically

how the model should be modified. This feature is not limited to our test. Many of the

specification testing methods with general alternative hypotheses share the same property.

6. CONCLUDING REMARKS

The dependence of an individual’s behavior on his affiliation with a group is often suspected.

Given a parametric model, the dependence of the behavior on the group affiliation means the

constancy of the model parameters across groups. In this paper, we consider the parameter

constancy testing problem in the setup in which the population consists of many groups,

each of which offers only a few observations. The parameter constancy test in such problem
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set up has not been studied at our best knowledge.

This paper develops a novel test of parameter constancy that works in the above-

mentioned setup and studies its statistical properties in detail. The proposed test only

requires that an M -estimator accurately estimate the model parameters under the null. The

estimation of the parameter for each group is unnecessary. The sizes of group samples can

be as small as two for the proposed method to work.

When assessing the power property of the proposed test presented via the large-G asymp-

totics and Monte Carlo simulations in this paper, one should keep in mind that the alternative

hypothesis of the test is the violation of the parameter constancy in any form. A test de-

signed with a more specific alternative in mind may have a better power under the particular

alternative than our test but can poorly perform under other alternatives. Suppose, for ex-

ample, that in the setup of the Monte Carlo simulations in Section 4, a researcher knows

that the groups with even g share the same parameter value, and the groups with odd g

also share the same parameter value . He can then take the usual Wald, LM, or LR test

approach to check the equality of the parameter between the odd and even groups. His test

would be undoubtedly more powerful than our test. If, however, the groups are reordered in

such a manner that all groups that had odd g’s have g between one and G/2, and all that

had even g’s have g between G/2 + 1 and G, then the same Wald, LM, and LR tests have

no power in excess of their level. That is, the three tests lose their power under the new

unanticipated alternative. Our test, on the other hand, have exactly the same performance

under the two alternatives.

One limitation of the proposed method is that we cannot test the constancy of the subset

of the parameters across groups (unless the other parameters are known to be constant across

groups). This reflects the fact that our setup does not allow us to identify the parameters for

each group. In other words, testing constancy of a subset of parameters across groups seems

to require that the group sample sizes be large enough (relative to the number of parameters)

to allow the parameters to be estimated accurately. If the parameters are estimable in each
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group, one could capture the variability of the parameters (or a subset of them) across groups

in a way similar to the approach of Swamy (1970), as Pesaran and Yamagata (2008) do in

their problem setup.

APPENDIX A: A UNIFORM LAW OF LARGE

NUMBERS, CENTRAL LIMIT THEOREMS, AND

SOME OTHER USEFUL RESULTS

We prove the theorems in the main text in Appendix B. We here establish a few results

useful in the proofs, including a uniform law of large numbers, a central limit theorem, and

a functional central limit theorem.

Recall that | · | denotes the Frobenius norm. Throughout the appendices, ‖Z‖r denotes

the Lr-norm of |Z| for each random matrix Z.

Lemma A.1 Let Z1 and Z2 be random matrices such that the column dimension of Z1 equals

the row dimension of Z2. Then for each p > 0,

‖Z1Z2‖p ≤ ‖Z1‖2p‖Z2‖2p.

Proof of Lemma A.1: Because the Frobenius norm is submultiplicative, we have that

|Z1Z2| ≤ |Z1| |Z2|. It follows that

‖Z1Z2‖p = E[|Z1Z2|p]1/p ≤ E[|Z1|p |Z2|p]1/p.
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By the Cauchy-Schwarz inequality, the right-hand side of this inequality is dominated by

(E[|Z1|2p]1/2E[|Z2|2p]1/2)1/p =E[|Z1|2p]1/(2p)E[|Z2|2p]1/(2p)

=‖Z1‖2p ‖Z2‖2p.

The desired result therefore follows. �

Lemma A.2 Let F1 be a function from a metric space (Γ, d) to the normed linear space

(Rl1×l2 , | · |) and F2 a function from (Γ, d) to (Rl2×l3 , | · |). Suppose that there exist real

constants c1 and c2 and functions h1 and h2 from R to [0,∞) such that

|Fj(γ)| ≤ cj, γ ∈ Γ, j ∈ {1, 2}

and

|Fj(γ2) − Fj(γ1)| ≤ cjhj(d(γ1, γ2)), (γ1, γ2) ∈ Γ2, j ∈ {1, 2}.

Define F3 : Γ → R
l1×l3 and h3 : R → [0,∞) by

F3(γ) ≡ F1(γ)F2(γ), γ ∈ Γ and

h3(z) ≡ h1(z) + h2(z), z ∈ R.

Then for each (γ1, γ2) ∈ Γ2

|F1(γ)F2(γ)| ≤ c1c2, γ ∈ Γ,

and

|F1(γ2)F2(γ2) − F1(γ1)F2(γ1)| ≤ (c1 + c2) h3(d(γ1, γ2)), (γ1, γ2) ∈ Γ2.

Proof of Lemma A.2: The first inequality immediately follows from the submultiplicativity
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of the Frobenius norm. For the second inequality, let γ1 and γ2 be an arbitrary pair of points

in Γ. Because

F3(γ2) − F3(γ1) = F1(γ2)(F2(γ2) − F2(γ1)) + (F1(γ2) − F1(γ1))F2(γ1),

we have that

|F3(γ2) − F3(γ1)|

≤ |F1(γ2)| |F2(γ2) − F2(γ1)| + |F2(γ1)| |F1(γ2) − F1(γ1)|

≤ (c1 + c2)(h1(d(γ1, γ2)) + h2(d(γ1, γ2))) = (c1 + c2)h3(d(γ1, γ)).

Thus, the second equality follows. �

Lemma A.3 For each random matrix Z for which E[Z] exists, it holds that |E[Z] | ≤ E[ |Z| ].

Proof of Lemma A.3: Let Z be a l1 × l2 random vector such that μ ≡ E[Z] exists. Let

φ denote the function | · | : R
l1×l2 → R. Because φ is convex on R

l1×l2 , by the support

theorem (Luenberger, 1969, Theorem 2, p. 133), there exists a linear function L : R
l1×l2 → R

such that for each z ∈ R
l1×l2 , φ(z) ≥ φ(μ) + L(z − μ). It follows that that

E[ |Z| ] = E[φ(Z)] ≥ φ(μ) + E[L(Z − μ)]

= φ(μ) + L(E[Z] − μ) = φ(μ) = |E[Z] |.

�

Lemma A.4 Let (Ω,F , P ) be a probability space, (Γ, d) a compact metric space, and {FGg :

(g, G) ∈ G} a double array of functions from Ω×Γ to R
l1×l2 measurable-(F ⊗B(Γ))/Bl1×l2.

Suppose that for each γ ∈ Γ, {FGg(·, γ)} is a rowwise independent array and that there

exists γ0 ∈ Γ and a real number δ ≥ 0 such that {FGg(·, γ0)} is uniformly L1+δ-bounded.

Also, suppose that, with the same δ, there exist a continuous function h : R → [0,∞) and a
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uniformly L1+δ-bounded, rowwise independent array of random variables {DGg : (g,G) ∈ G}

that satisfy that h(y) ↓ 0 as y ↓ 0 and that

|FGg(·, γ1) − FGg(·, γ2)| ≤ DGg h(d(γ1, γ2)), (γ1, γ2) ∈ Γ2, (g,G) ∈ G. (9)

Then

(a) The set {FGg(·, γ) : γ ∈ Γ, (g,G) ∈ G} is uniformly L1+δ-bounded.

(b) The sequence {γ �→ G−1
∑G

g=1 E[FGg(·, γ)] : Γ → R}G∈N is uniformly bounded and

uniformly equicontinuous.

(c) If in addition the assumptions of the current theorem hold with some δ > 0, then

sup
γ∈Γ

∣∣∣∣G−1

G∑
g=1

FGg(·, γ) − G−1

G∑
g=1

E[FGg(·, γ)]

∣∣∣∣ → 0

as n → ∞ in probability-P .

Proof of Lemma A.4: Pick γ ∈ Γ arbitrarily. We have that for each (g, G) ∈ G,

|FGg(·, γ)| ≤ |FGg(·, γ0)||FGg(·, γ) − FGg(·, γ0)|

≤ |FGg(·, γ0)| + DGg h(d(γ1, γ2)) ≤ |FGg(·, γ0)| + h̄DGg,

where h̄ ≡ sup{h(|γ2 − γ1|) : γ ∈ Γ} < ∞, because h is continuous and Γ is compact. It

follows that

‖FGg(·, γ)‖1+δ ≤ ‖FGg(·, γ0)‖1+δ + h̄‖DGg‖1+δ, γ ∈ Γ, (g, G) ∈ G.

Claim (a) follows from this inequality, since {FgG(·, γ) : γ ∈ Γ, (g, G) ∈ G} and {DGg :

(g, G) ∈ G} are uniformly L1+δ-bounded.
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In (b), the uniform boundedness immediately follows from (a). For the uniform equicon-

tinuity, we use (9) to obtain that for each (γ1, γ2) ∈ Γ2 and each G ∈ N,

∣∣∣∣G−1

G∑
g=1

E[FGg(·, γ1)] − G−1

G∑
g=1

E[FGg(·, γ2)]

∣∣∣∣
≤ G−1

G∑
g=1

|E[FGg(·, γ1) − FGg(·, γ2)]|

≤ G−1

G∑
g=1

E[ |FGg(·, γ1) − FGg(·, γ2)| ]

≤ G−1

G∑
g=1

E[DGg] h(d(γ1, γ2)) ≤ ch(d(γ1, γ2)),

where the first inequality follows from Lemma A.3, and

c ≡ sup{E[DGg] : (g,G) ∈ G}

is finite, because {DGg : (g, G) ∈ G} is uniformly L1+δ-bounded. The desired result therefore

follows.

For (c), we have that for each γ ∈ Γ

G−1

G∑
g=1

FGg(·, γ) − G−1

G∑
g=1

E[FGg(·, γ)] → 0 in probability-P (10)

by Sen (1970, Theorem 3), given (a). It thus suffices to show that

{
G−1

G∑
g=1

FGg(·, γ) − G−1

G∑
g=1

E[FGg(·, γ)]
}

G∈N

is stochastically equicontinuous uniformly in γ ∈ Γ (Andrews, 1992, Theorem 1). The
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stochastic equicontinuity holds if (A)

{
γ �→ G−1

G∑
g=1

E[fGg(·, γ)] : Γ → R

}
G∈N

is equicontinuous uniformly in γ ∈ Γ, and (B)

G−1

G∑
g=1

DGg = OP (1) as G → ∞,

in addition to (9) assumed here (Andrews, 1992, Lemma 1(a)). Because (A) has been

already established in (b), and (B) immediately follows from Sen (1970, Theorem 3), the

desired result follows. �

Lemma A.5 Let {UGg : (g,G) ∈ G} be a rowwise independent array of zero-mean v × 1

random vectors.

(a) If {UGg} is uniformly L2+δ-bounded for some δ ≥ 0, then

G−1/2

G∑
g=1

UGg = OP (1).

(b) If {UGg} is uniformly L2+δ-bounded for some δ > 0, and {var[UGg] : (g, G) ∈ G} is

uniformly positive definite, then

V
−1/2
G G−1/2

G∑
g=1

UGg
A∼ N(0, I) as G → ∞,

where

VG ≡ G−1

G∑
g=1

var[UGg], G ∈ N.

Proof of Lemma A.5: The uniform L2+δ-boundedness of {UGg} implies the uniform L2-

boundedness of {UGg}. Because {UGg} is rowwise independent with zero-means and finite
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second moments, we have that

E

[∣∣∣G−1/2

G∑
g=1

UGg

∣∣∣2] = E

[(
G−1/2

G∑
g=1

UGg

)′(
G−1/2

G∑
g=1

UGg

)]

= G−1

G∑
g=1

E[U ′
GgUGg] = G−1

G∑
g=1

‖UGg‖2
2.

Because {UGg} is uniformly L2-bounded, it follows that

sup
G∈N

E

[∣∣∣∣G−1/2

G∑
g=1

UGg

∣∣∣∣
2
]

< ∞.

Applying the Markov inequality (Davidson, 1994, p. 132) with this fact establishes (a).

To establish (b), by the Cramér-Wold device (Davidson, 1994, Theorem 25.5, p. 405), it

suffices to show for each unit-length λ ∈ R
v,

λ′V −1/2
G G−1/2

G∑
g=1

UGg
A∼ N(0, 1) as G → ∞. (11)

Pick a unit-length λ ∈ R
v arbitrarily. Then the array

{ΞGg ≡ λ′V −1/2
G G−1/2UGg : (g,G) ∈ G}

satisfies that

|ΞGg| ≤ |λ| |V −1/2
G |G−1/2 |UGg| = |V −1/2

G |G−1/2 |UGg|, (g, G) ∈ G.

The uniform nonsingularity of {var[UGg]} implies that the uniform nonsingularity of VG,

so that |V −1/2
G |, which is dominated by the reciprocal of the square root of the minimum

eigenvalue of VG, is bounded uniformly in G ∈ N. It follows that

|ΞGg| ≤ cG−1/2 |UGg|, (g, G) ∈ G,
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where c ≡ supG∈N
|V −1/2

G |. Using this fact, we obtain that

G∑
g=1

E[|ΞGg|2+δ] ≤ c2+δG−(1+(δ/2))

G∑
g=1

E[|UGg|2+δ]

≤ G−δ/2c2+δ

(
sup{‖UGg‖2+δ}

)2+δ

→ 0 as G → ∞,

because {UGg} is uniformly L2+δ-bounded. The Liapunov condition thus holds for {ΞGg},

and so does the Lindeberg condition (Davidson, 1994, Theorem 23.11, p. 372–373). In

addition, we have that
G∑

g=1

var[ΞGg] = 1, G ∈ N.

The desired results follows by the Lindeberg theorem (Davidson, 1994, Theorem 23.6, p. 369–

371). �

APPENDIX B: PROOF OF THEOREMS

We first prove several lemmas and then apply them to prove the theorems stated in the

main text. The uniform law of large numbers and the central limit theorem employed in the

following proofs are provided in Appendix A, along with a few other useful results.

Lemma B.1 Suppose that Assumption 1(a) hold. Then it holds that for each (g, G) ∈ G,

2

n̄
≤ ngG

NG

≤ n̄

2
.

Also, for each g ∈ N,

1 ≤ ng

ng − 1
≤ 2.

Proof of Lemma B.1: The group sample size ng is between 2 and n̄ by Assumption 1(a),

and so is the average group sample size, NG/G. It follows that (ngG)/NG = ng/(NG/G) is

between 2/n̄ and n̄/2. This establishes the first inequality.
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For the second inequality, note that n/(n − 1) is decreasing in n. Thus, ng/(ng − 1)

attains its maximum when ng = 2, and it is never smaller than limn→∞ n/(n− 1) = 1. This

verifies the second inequality. �

Lemma B.2 Suppose that Assumptions 1(a)(b) and 4(b) hold. Then there exists an uni-

formly L2+2δ-bounded, independently distributed sequence of random variables, {DH,g}g∈N,

such that

|∇2qgi(·, θ)| ≤ DH,g, θ ∈ Θ0, i ∈ Ig, g ∈ N and

|∇2qgi(Xgi, θ2) −∇qgi(Xgi, θ1)| ≤ DH,gh(|θ2 − θ1|),

(θ1, θ2) ∈ Θ2
0, i ∈ Ig, g ∈ N.

Proof of Lemma B.2: Because h is continuous and Θ0 is compact, we have that h̄ ≡

sup{h(|θ2 − θ1|) : (θ1, θ2) ∈ Θ2
0} < ∞. For each g ∈ N, set

DH,g ≡
ng∑
i=1

|∇2qg(Xgi, θ0)| + (1 + h̄)

ng∑
i=1

d1(Xgi).

Then, {DH,g}g∈N is a independent sequence, because {Xgi : i ∈ Ig, g ∈ N} is an indepen-

dently distributed array by Assumption 1(a). Also, we have that

‖DH,g‖2+2δ ≤
ng∑
i=1

‖∇2qg(Xgi, θ0)‖2+2δ + (1 + h̄)

ng∑
i=1

‖d1(Xgi)‖2+2δ

≤ n̄‖∇2qg(Xg1, θ0)‖2+2δ + (1 + h̄)n̄‖d1(Xg1)‖2+2δ, g ∈ N.

The uniform L2+2δ-boundedness of {DH,g} follows from this inequality, because both {∇2qg(Xg1, θ0)}g∈N

and {d1(Xg1)}g∈N are uniformly L2+2δ-bounded by Assumption 4(b). Furthermore, it follows
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from Assumption 4(b) that

|∇2qg(Xgi, θ)| ≤ |∇2qg(Xgi, θ0)| + |∇2qg(Xgi, θ) −∇2qg(Xgi, θ0)|

≤ |∇2qg(Xgi, θ0)| + d1(Xgi)h(|θ − θ0|)

≤ |∇2qg(Xgi, θ0)| + h̄d1(Xgi) ≤ DH,g, θ ∈ Θ0, i ∈ Ig, g ∈ N.

and that for each (θ1, θ2) ∈ Θ2
0,

|∇2qg(Xgi, θ2) −∇2qg(Xgi, θ1)| ≤ d1(Xgi)h(|θ2 − θ1|)

≤ DH,gh(|θ2 − θ1|), i ∈ Ig, g ∈ N.

This completes the proof. �

Lemma B.3 Suppose that Assumptions 1(a)(b) and 4(b) hold. Define {ǍG : Ω × Θ →

R
p×p}G∈N by

ǍG(·, θ) ≡ ∇2QG(·, θ) = G−1

G∑
g=1

ǎGg(·, θ), θ ∈ Θ, G ∈ N,

where ǎGg : Ω × Θ → R
p×p is defined by

ǎGg ≡ G

NG

ng∑
i=1

∇2qg(Xgi, θ), θ ∈ Θ, G ∈ N.

Then {AG : Θ → R
p×p}G∈N is bounded and equicontinuous uniformly on Θ0. Also, {|ǍG(·, θ)−

AG(θ)|}G∈N converges to zero uniformly in θ ∈ Θ0 in probability-P .

Proof of Lemma B.3: We apply Lemma A.4, taking {ǎGg : (g, G) ∈ G} for {FGg}. The

set Θ0 is a compact subset of the p-dimensional Euclidean space. For each θ ∈ Θ0, the

array {ǎGg(·, θ)} is rowwise independent. By Lemma B.1 and B.2, we have that for each
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(g, G) ∈ G,

|ǎGg(·, θ)| ≤
G

NG

ng∑
i=1

|∇2qg(Xgi, θ)| ≤
ngG

NG

DH,g ≤ n̄

2
DH,g, θ ∈ Θ0,

|ǎGg(·, θ2) − ǎGg(·, θ1)| ≤
G

NG

ng∑
i=1

DH,gh(|θ2 − θ1|)

≤ ngG

NG

DH,gh(|θ2 − θ1|) ≤
n̄

2
DH,gh(|θ2 − θ1|), (θ1, θ2) ∈ Θ2

0,

where {DH,g}g∈N is a uniformly L2+2δ-bounded, independent sequence of random variables.

Thus, Lemma A.4 applies to {ǎGg : (g,G) ∈ G}, and the desired results follow. �

Lemma B.4 Suppose that Assumptions 1(a)(b) and 4(d) hold. Then there exists an uni-

formly L4+4δ-bounded, independently distributed sequence of random variables, {DS,g}g∈N,

such that

|∇qgi(·, θ)| ≤ DS,g, θ ∈ Θ0, i ∈ Ig, g ∈ N,

and

|∇qgi(Xgi, θ2) −∇qgi(Xgi, θ1)| ≤ DS,gh(|θ2 − θ1|),

(θ1, θ2) ∈ Θ2
0, i ∈ Ig, g ∈ N.

Proof of Lemma B.4: The result can be obtained by repeating the proof of Lemma B.2,

replacing ∇2qg with ∇qg and 2 + 2δ with 4 + 4δ. �

Lemma B.5 Suppose that Assumptions 1(a)(b) and 4(d) hold. For each (g, G) ∈ G, define

řGg : Ω × Θ → R
p by

řGg(·, θ) ≡ (G/NG)

ng∑
i=1

∇qg(Xgi, θ), θ ∈ Θ, (g, G) ∈ G.
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Then there exists an L4+4δ-bounded, independently distributed sequence of random variable,

{Dr,g}g∈N, such that

|řGg(·, θ)| ≤ Dr,g, θ ∈ Θ0, (g,G) ∈ G,

and for each (θ1, θ2) ∈ Θ2
0,

|řGg(·, θ2) − řGg(·, θ1)| ≤ Dr,gh(|θ2 − θ1|), (g, G) ∈ G.

Proof of Lemma B.5: For each g ∈ N, set Dr,g ≡ (n̄/2)DS,g, where DS,g is as in Lemma B.4.

Because {DS,g}g∈N is a L4+4δ-bounded, independent sequence, so is {Dr,g}g∈N. The array

{Dr,g} satisfies that

|řGg(·, θ)| ≤
ngG

NG

n−1
g

ng∑
i=1

|∇qg(Xgi,θ)| ≤
n̄

2
DS,g = Dr,g, (g, G) ∈ G,

and for each (θ1, θ2) ∈ Θ2
0,

|řGg(·, θ2) − řGg(·, θ2)| ≤
ngG

NG

n−1
g

ng∑
i=1

|∇qg(Xgi,θ2) −∇qg(Xgi,θ1)|

≤ n̄

2
DS,gh(|θ2 − θ1|) = DS,gh(|θ2 − θ1|), (g, G) ∈ G.

The desired result therefore follows. �

Lemma B.6 Suppose that Assumptions 1(a)(b)(d) and 4(d) hold. Then

G1/2∇QG(·, θ∗G) = G−1/2

G∑
g=1

r∗Gg = OP (1),

where for each (g, G) ∈ G, r∗Gg ≡ řGg(·, θ∗G), and {řGg : (g,G) ∈ G} is as in Lemma B.5.

Proof of Lemma B.6: The first equality immediately follows from the definitions of

{QG}G∈N and {řGg : (g, G) ∈ G}. Because {r∗Gg : (g, G) ∈ G} is an L4+4δ-bounded, rowwise
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independent array by Lemma B.5, the second equality follows from Lemma A.5(a). �

Lemma B.7 Suppose that Assumptions 1(a)(b)(d), 3(a), and 4 hold. Then

G1/2(θ̂G − θ∗G) = −A∗
G
−1G−1/2

G∑
g=1

G

NG

ng∑
i=1

∇qg(Xgi, θ
∗
G) + oP (1)

= OP (1).

Proof of Lemma B.7: Given Lemmas B.3 and B.6, the desired results can be established

by using the standard linearization technique often employed in derivation of the asymptotic

normality of M-estimators (see, e.g., the proof of White (1994, Theorem 6.10)). �

Lemma B.8 Suppose that Assumptions 1(a)(b) and 4(b)(d) hold. Define {ĽG : Ω×Θ×S
m →

R
m×p}G∈N by

ĽG(·, θ,W ) ≡ ∇θα̌(·, θ,W )

= G−1

G∑
g=1

ľGg(·, θ,W ), θ ∈ Θ, W ∈ S
m, G ∈ N,

where {ľGg : Ω × Θ × S
m → R

p : (g,G) ∈ G} is defined by

ľGg(·, θ,W ) ≡ 2G

NG

(
− 1

ng − 1

ng∑
i=1

∇sgi(·, θ)Wsgi(·, θ)

+
n2

g

ng − 1
∇s̃gi(·, θ)Ws̃gi(·, θ)

)
, θ ∈ Θ, W ∈ R

m×m, G ∈ N.

Then for each bounded sequence {W̄G ∈ S
m}G∈N, it holds that {LG(·, W̄G) : Θ → R

m×p}G∈N

is bounded and equicontinuous uniformly on Θ0 and that {ĽG(·, θ, W̄G) − LG(θ, W̄G)}G∈N

converges to zero uniformly in θ ∈ Θ0 in probability-P .

Proof of Lemma B.8: We apply Lemma A.4(b)(c), taking for {ľGg : (g, G) ∈ G} for {FGg}.

The set Θ0 is a compact subset of the p-dimensional Euclidean space. For each θ ∈ Θ0, the
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array {ǎGg(·, θ)} is rowwise independent. Let {DH,g}g∈N be as in Lemma B.2 and {DS,g}g∈N

as in Lemma B.4. Also, let c ≡ sup{|W̄G| : G ∈ N}. Then, by Lemma A.2, it follows from

B.2 and B.4 that

∣∣∣∣ 1

ng − 1
n−1

g

ng∑
i=1

∇sgi(·, θ)W̄Gsgi(·, θ)
∣∣∣∣

≤ 1

ng − 1
n−1

g

ng∑
i=1

|∇sgi(·, θ)W̄Gsgi(·, θ)| ≤ cDH,gDS,g,

θ ∈ Θ0, (g, G) ∈ G and (12)

∣∣∣∣ 1

ng − 1
n−1

g

ng∑
i=1

∇sgi(·, θ2)W̄Gsgi(·, θ2)

− 1

ng − 1
n−1

g

ng∑
i=1

∇sgi(·, θ1)W̄Gsgi(·, θ1)

∣∣∣∣
≤ 1

ng − 1
n−1

g

ng∑
i=1

|∇sgi(·, θ2)W̄Gsgi(·, θ2) −∇sgi(·, θ1)W̄Gsgi(·, θ1)|

≤ 2c(DH,g + DS,g)h(|θ2 − θ1|), (θ1, θ2) ∈ Θ2
0, (g,G) ∈ G. (13)

Analogously, we can show that

∣∣∣∣ ng

ng − 1
∇s̃g(·, θ)W̄Gs̃g(·, θ)

∣∣∣∣ ≤ ng

ng − 1
|∇s̃g(·, θ)W̄Gs̃g(·, θ)|

≤ 2cDH,gDS,g, θ ∈ Θ0, (g, G) ∈ G and (14)

∣∣∣∣ ng

ng − 1
∇s̃g(·, θ2)W̄Gs̃g(·, θ2) −

ng

ng − 1
∇s̃g(·, θ1)W̄Gs̃g(·, θ1)

∣∣∣∣
≤ ng

ng − 1
|∇s̃g(·, θ2)W̄Gs̃g(·, θ2) −∇s̃g(·, θ1)W̄Gs̃g(·, θ1)|

≤ 4c(DH,g + DS,g)h(|θ2 − θ1|), (θ1, θ2) ∈ Θ2
0, (g,G) ∈ G. (15)
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For each g ∈ N, let Dl,Gg ≡ n̄c(3DH,gDS,g + 6DH,g + 6DS,g). Because

ľGg(·, θ,W ) =
2ngG

NG

(
− 1

ng − 1
n−1

g

ng∑
i=1

∇sgi(·, θ)W̄Gsgi(·, θ)

+
ng

ng − 1
∇s̃gi(·, θ)W̄Gs̃gi(·, θ)

)
,

it follows from Lemma B.1 and (12)–(15) that for each (g,G) ∈ G,

|ľGg(·, θ, W̄G)| ≤ Dl,Gg, θ ∈ Θ0 and

|ľGg(·, θ2, W̄G) − ľGg(·, θ1, W̄G)| ≤ Dl,Gg h(|θ2 − θ1|), (θ1, θ2) ∈ Θ2
0.

Because both DH,g and DS,g are functions of Xg1, . . . , Xgng , the process {(DH,g, DS,g)}g∈N

is independent, so is {Dl,Gg}g∈N. Further, by Lemma A.1, we have that

‖Dl,Gg‖1+δ ≤ n̄c(3‖DH,g‖2+2δ ‖DS,g‖2+2δ + 6‖DH,g‖1+δ + 6‖DS,g‖1+δ).

Since {DH,g} is uniformly L2+2δ-bounded, and {DS,g} is uniformly L4+4δ-bounded, the right-

hand side of the above inequality is bounded over g ∈ N. It follows that {Dl,Gg} is uniformly

L1+δ-bounded.

Thus, Lemma A.4 applies to {ľGg, (g, G) ∈ G}. Because for each θ ∈ Θ and each G ∈ N,

LG(θ, W̄G) = E[ĽG(·, θ, W̄G)] = L(θ, W̄G),

the desired results follow. �

Lemma B.9 Suppose that Assumptions 1(a)(b) and 4(d) hold. Define an array {ζ̌Gg : Ω ×
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Θ × S
m × R

p×p × R
m → R : (g, G) ∈ G} by

ζ̌Gg(·, θ,W,B, L) ≡ G

NG

(
ng∑
i=1

sgi(·, θ)′Wsgi(·, θ)

− ng

ng − 1

ng∑
i=1

(sgi(·, θ) − s̃g(·, θ))′W (sgi(·, θ) − s̃g(·, θ))

− L′B
ng∑
i=1

∇qg(Xgi, θ)

)
,

(θ,W,B, L) ∈ Θ× S
m ×R

p×p ×R
m, (g, G) ∈ G. Let W, B, and L be compact subsets of S

m,

R
p×p, and R

m, respectively. Then there exists an L2+2δ-bounded, independently distributed

sequence of random variables {Dζ,g}g∈N and a continuous function hζ : R → R such that

hζ(y) ↓ 0 as y ↓ 0 that satisfy that

|ζ̌Gg(·, θ,W,B, L)| ≤ Dζ,g, (θ,W,B, L) ∈ Θ0 × W × B × L, (g,G) ∈ G (16)

and for each pair (θ1,W1, B1, L1) and (θ2,W2, B2, L2) in Θ0 × W × B × L

|ζ̌Gg(·, θ2,W2, B2, L2) − ζ̌Gg(·, θ1,W1, B1, L1)|

≤ Dζ,g hζ(|θ2 − θ1| + |W2 − W1| + |B2 − B1| + |L2 − L1|),

(g, G) ∈ G. (17)

Proof of Lemma B.9: Note that ζ̌Gg can be written as

ζ̌Gg(·, θ,W,B, L) ≡ ngG

NG

(
− 1

ng − 1
n−1

g

ng∑
i=1

sgi(·, θ)′Wsgi(·, θ)

+
ng

ng − 1
s̃g(·, θ)′Ws̃g(·, θ) − L′Bn−1

g

ng∑
i=1

∇qg(Xgi, θ)

)
,

(θ, W,B, L) ∈ Θ × S
m × R

p×p × R
m, (g,G) ∈ G. (18)
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By Lemma B.1, {ngG/NG : (g, G) ∈ G} is bounded. We first examine each of the three

terms in the parentheses on the right-hand side in (18) and then combine the results to

establish the desired result.

By Lemma B.4, we have that for each (θ,W ) ∈ Θ0 × W and each g ∈ N,

∣∣∣∣− 1

ng − 1
n−1

g

ng∑
i=1

sgi(·, θ)′Wsgi(·, θ)
∣∣∣∣

≤ 1

ng − 1
|W |n−1

g

ng∑
i=1

|sgi(·, θ)|2 ≤ cW D2
S,g, (19)

where cW ≡ sup{|W | : W ∈ W} < ∞. We also have that for each i ∈ Ig, each g ∈ N, and

each pair (θ1,W1) and (θ2,W2) in Θ0 × W,

|sgi(·, θ2)
′W2sgi(·, θ2) − sgi(·, θ1)

′W1sgi(·, θ1)|

≤ |sgi(·, θ2)
′W2sgi(·, θ2) − sgi(·, θ1)

′W2sgi(·, θ1)|

+ |sgi(·, θ1)
′W2sgi(·, θ1) − sgi(·, θ1)

′W1sgi(·, θ1)|

≤ |sgi(·, θ2)
′W2sgi(·, θ2) − sgi(·, θ1)

′W2sgi(·, θ1)|

+ |sgi(·, θ1)
′(W2 − W1)sgi(·, θ1)|

≤ 4cWDS,g h(|θ2 − θ1|) + D2
S,g |W2 − W1|

≤ (4cW + 1)(D2
S,g + DS,g)(h(|θ2 − θ1|) + |W2 − W1|),

i ∈ Ig, g ∈ N,

42



where the second last inequality follows by Lemmas A.2 and B.4. It follows that for each

pair (θ1,W1) and (θ2,W2) in Θ0 × W,

∣∣∣∣∣
(
− 1

ng − 1
n−1

g

ng∑
i=1

sgi(·, θ2)
′W2sgi(·, θ2)

)

−
(
− 1

ng − 1
n−1

g

ng∑
i=1

sgi(·, θ1)
′W1sgi(·, θ1)

)∣∣∣∣∣
≤ 1

ng − 1
n−1

g

ng∑
i=1

|sgi(·, θ2)
′W2sgi(·, θ2) − sgi(·, θ1)

′W1sgi(·, θ1)|

≤ (4cW + 1)(D2
S,g + DS,g)(h(|θ2 − θ1|) + |W2 − W1|), g ∈ N. (20)

For the second term, we can analogously derive that

∣∣∣∣− ng

ng − 1
s̃g(·, θ)′Ws̃g(·, θ)

∣∣∣∣ ≤ 2cW D2
S,g, (θ, W ) ∈ Θ0 × W, g ∈ N, (21)

and that for each pair (θ1,W1) and (θ2,W2) in Θ0 × W,

∣∣∣∣∣
(
− ng

ng − 1
s̃g(·, θ2)

′W2s̃g(·, θ2)

)

−
(
− ng

ng − 1
s̃g(·, θ1)

′W1s̃g(·, θ1)

)∣∣∣∣∣
≤ 2(4cW + 1)(D2

S,g + DS,g)(h(|θ2 − θ1|) + |W2 − W1|), g ∈ N. (22)

For the third term, let cL ≡ sup{|L| : L ∈ L}, cB ≡ sup{|B| : B ∈ B}, and cLB ≡

cL + cB + cLcB. Then for each (L,B) ∈ L × B, |LB| ≤ cLB, and for each pair (L1, B1) and

(L2, B2) in L × B,

|L2B2 − L1B1| ≤ cLB(|L2 − L1| + |B2 − B1|).
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It follows that for each (θ, B, L) ∈ Θ0 × R
p×p × R

m,

|L′Bn−1
g

ng∑
i=1

∇qg(Xgi, θ)| ≤ |L′B|n−1
g

ng∑
i=1

|∇qg(Xgi, θ)|

≤ cLBDS,g, g ∈ N. (23)

Application of Lemma A.2 also yields that for each pair (θ1, B1, L1) and (θ2, B2, L2) in

Θ0 × R
p×p × R

m,

|L2B2n
−1
g

ng∑
i=1

∇qg(Xgi, θ2) − L1B1n
−1
g

ng∑
i=1

∇qg(Xgi, θ1)|

≤ (cLB + DS,g)(h(|θ2 − θ1|) + |L2 − L1| + |B2 − B1|), g ∈ N. (24)

Now, set

Dζ,g ≡ n̄

2
(3(4cW + 1)(D2

S,g + DS,g) + cLBDS,g + cLB + DS,g), g ∈ N.

and

hζ(y) ≡

⎧⎪⎪⎨
⎪⎪⎩

3 sup{h(z) : z ∈ [0, y]} + 3y if y ≥ 0,

0 otherwise, y ∈ R.

Then {Dζ,g}g∈N is an uniformly L2+2δ-bounded, independently distributed sequence, and hζ

satisfies that hζ(y) ↓ 0 as y ↓ 0. Also, by using (19)–(24), we can verify that {Dζ,g}g∈N and

hζ satisfy (16) and (17). The result therefore follows. �

Lemma B.10 Suppose that Assumptions 1, 3(a), and 4 hold. Suppose that {W̄G ∈ S
m}G∈N
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is bounded. Then

α̌G(·, θ̂G, W̄G) − αG(θ∗G, W̄G)

= G−1

G∑
g=1

ζ̌Gg(·, θ∗G, W̄G, A∗
G
−1, L∗

G) − αG(θ∗G, W̄G) + oP (G−1/2) (25)

= OP (G−1/2), (26)

where {ζ̌Gg : (g, G) ∈ G} is as in Lemma B.9.

Proof of Lemma B.10: By definition of {ζ̌Gg : (g, G) ∈ G}, we have that for each Grange,

G−1

G∑
g=1

ζ̌Gg(·, θ∗G, W̄G, A∗
G
−1, L∗

G)

= α̌G(·, θ∗G, W̄G) − L∗
G
′A∗

G
−1G−1

G∑
g=1

G

NG

ng∑
i=1

∇qg(Xgi, θ
∗
G).

By subtracting αG(θ∗G, W̄G) from both sides of this equality and rearranging the resulting

equality yields that for each G ∈ N,

α̌G(·, θ∗G, W̄G) − αG(θ∗G, W̄G) = G−1

G∑
g=1

ζ̌Gg(·, θ∗G, W̄G, A∗
G
−1, L∗

G)

− αG(θ∗G, W̄G) + L∗
G
′A∗

G
−1G−1

G∑
g=1

G

NG

ng∑
i=1

∇qg(Xgi, θ
∗
G).

45



It follows that for each G ∈ N,

α̌G(·, θ̂G, W̄G) − αG(θ∗G, W̄G)

= (α̌G(·, θ̂G, W̄G) − α̌G(·, θ∗, W̄G)) + (α̌G(·, θ∗, W̄G) − αG(θ∗G, W̄G))

=

(
G−1

G∑
g=1

ζ̌Gg(·, θ∗G, W̄G) − αG(θ∗G, W̄G)

)

+ (α̌G(·, θ̂G, W̄G) − α̌G(·, θ∗, W̄G))

+ L∗
G
′A∗

G
−1G−1

G∑
g=1

G

NG

ng∑
i=1

∇qg(Xgi, θ
∗
G). (27)

To prove the equality in (25), it thus suffices to prove that in the above equality, the sum of

the second and third terms on the right-hand side is oP (G−1/2). Because {θ∗G} is uniformly

interior to Θ0, there exists a real number ε > 0 such that the open ball with radius ε

centered at θ∗G is contained in int Θ0 for each G ∈ N. By the mean value theorem for random

functions (Jennrich, 1969, Lemma 3), there exists a sequence of random vectors {θ̈G : Ω →

Θ}G∈N such that for each G ∈ N, θ̈G is on the line segment connecting θ̂G and θ∗G, and

α̌G(·, θ̂G, W̄G) − α̌G(·, θ∗G, W̄G) = ĽG(·, θ̈G, W̄G)′(θ̂G − θ∗G)

whenever |θ̂G − θ∗G| < ε (where ε is as described above). By Lemma B.8, {ĽG(·, θ, W̄G) −

LG(θ, W̄G)}G∈N converges to zero uniformly in θ ∈ Θ0 in probability-P , and {LG(, W̄G) :

Θ → R
m×p}G∈N is equicontinuous uniformly on Θ0. Also, we have that

|θ̈G − θ∗G| ≤ |θ̂G − θ∗G| = OP (G−1/2)

by Lemma B.7. It follows that |ĽG(·, θ̈G, W̄G) − L∗
G| = oP (1), and

α̌G(·, θ̂G, W̄G) − α̌G(·, θ∗G, W̄G) = L∗
G(θ̂G − θ∗G) + oP (G−1/2).
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Applying the first equality of Lemma B.7 in this equality establishes that the sum of the

second and third terms on the right-hand side of (27) is oP (G−1/2).

To prove the second equality, note that

E

[
G−1

G∑
g=1

ζ̌Gg(·, θ∗G, W̄G, A∗
G
−1, L∗

G) − αG(θ∗G, W̄G)

]
= 0.

By Lemma B.9,

{ζ̌Gg(·, θ∗G, W̄G, A∗
G
−1, L∗

G) − αG(θ∗G, W̄G) : (g, G) ∈ G}

is an uniformly L2+δ-bounded, independently distributed array. Applying Lemma A.5(a) to

it proves that the first term in (25) is OP (G−1/2). The equality in (26) therefore follows. �

Lemma B.11 Suppose that Assumptions 1, 3(a), and 4 hold. Then

ŜG − Σ̂G − N−1
G

G∑
g=1

ngE[s∗Gg1]E[s∗Gg1]
′ = OP (G−1/2),

and

ŜG − Σ̂G = OP (1).

Proof of Lemma B.11: Application of Lemma B.10 taking for W̄G the m × m matrix

such that its (i, j)- and (j, i)-elements are ones, and all other elements are zeros for each

(i, j) ∈ {1, 2, . . . , m}2 establishes the first equality.

For the second equality, note that

∣∣∣∣N−1
G

G∑
g=1

ngE[s∗Gg1]E[s∗Gg1]
′
∣∣∣∣ ≤ G−1

G∑
g=1

Gng

NG

|E[s∗Gg1]|2

≤ G−1

G∑
g=1

n̄

2
E[|s∗Gg1|]2 =

n̄

2
G−1

G∑
g=1

‖s∗Gg1‖2
2, G ∈ N.
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As {sGg1 : θ ∈ Θ0, (g, G) ∈ G} is uniformly L4+δ-bounded by Lemma B.4, it holds that

sup
G∈N

∣∣∣∣N−1
G

G∑
g=1

ngE[s∗Gg1]E[s∗Gg1]
′
∣∣∣∣ < ∞.

The desired result therefore follows. �

Lemma B.12 Suppose that Assumptions 1 and 2(b) hold. Then

∣∣∣∣N−1
G

G∑
g=1

ngE[s∗Gg1]E[s∗Gg1]
′
∣∣∣∣ = O(α∗

G).

Proof of Lemma B.12: Let λ̄ denote the infimum of the minimum eigenvalue of WG taken

over G ∈ N. Then λ̄ is positive, and we have that

α∗
G = N−1

G

G∑
g=1

ngE[s∗Gg1]
′WGE[s∗Gg1] ≥ λ̄N−1

G

G∑
g=1

ng|E[s∗Gg1]|2, G ∈ N.

It follows that

∣∣∣∣N−1
G

G∑
g=1

ngE[s∗Gg1]E[s∗Gg1]
′
∣∣∣∣ ≤ N−1

G

G∑
g=1

ng|E[s∗Gg1]E[s∗Gg1]
′ |

≤ N−1
G

G∑
g=1

ng|E[s∗Gg1] |2 ≤ λ̄−1α∗
G.

This establishes the desired result. �

Lemma B.13 Suppose that Assumptions 1, 2(a), 3, and 4 hold and that α∗
G = O(G−1/2).

Then

G1/2(α̂G − α̌G(·, θ̂G, WG)) = oP (1).

Proof of Lemma B.13: Because N−1
G

∑G
g=1 ngE[s∗Gg1]E[s∗Gg1]

′ = O(α∗
G) = O(G−1/2) under

the current assumption by Lemma B.12, it follows from Lemma B.11 that |ŜG − Σ̂G| =
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OP (G−1/2). Given this, we obtain that

|G1/2(α̂G − α̌G(·, θ̂G,WG))| =

∣∣∣∣∣tr
(

(ŴG − WG)G1/2(ŜG − Σ̂G)

)∣∣∣∣∣
≤ m |ŴG − WG|G1/2|ŜG − Σ̂G| = oP (1).

The result therefore follows. �

Proof of Theorem 3.1: The difference between α̂G and α∗
G can be decomposed as

α̂G − α∗
G = (α̂G − α̌G(·, θ̂G, WG)) + (α̌G(·, θ̂G,WG) − α∗

G)

= tr((ŴG − WG)(ŜG − Σ̂G))

− tr

(
WG

(
ŜG − Σ̂G − N−1

G

G∑
g=1

ngE[s∗Gg1]E[s∗Gg1]
′
))

, G ∈ N.

It follows from Assumption 3(b) and Lemma B.11 that the first term on the right-hand side

in this equality converges to zero in probability-P . Also, it follows from Assumption 2(a) and

Lemma B.11 that the second term, being OP (G−1/2), is oP (1). Claim (a) therefore follows.

To prove claim (b), note that

G1/2(α̂G − α∗
G) =G1/2(α̂G − α̌G(·, θ̂G,WG))

+ G1/2(α̌G(·, θ̂G,WG) − α∗
G), G ∈ N.

In this equality, application of Lemma B.13 shows that the first term on the right-hand side

is oP (1), given that α∗
G = O(G−1/2). Applying Lemma B.10, setting W̄G = WG, in the second

term on the right-hand side of the above equality then establishes (6), from which (7) follows

by Lemma A.5 and the asymptotic equivalence lemma. �

Proof of Theorem 3.2: Note that for each (g, G) ∈ G,

ξ̂Gg = ζ̌Gg(·, θ̂G, ŴG, Â+
G, L̂G).

49



By Assumption 2(a), there exists a compact subset W of S
m, to which {WG}G∈N is uniformly

interior. By Lemma B.3 and Assumption 4(c), there also exists a compact subset B of R
p×p,

to which {A∗
G
−1}G∈N is uniformly interior. Further, by Lemma B.8, there exists a compact

subset L of R
p, to which {L∗

G}G∈N is uniformly interior. By Lemma B.9 and A.2, there exist

a L2+δ-bounded, independently distributed sequence {Dζ,g}g∈N and a continuous function

hζ : R → R such that hζ(y) ↓ 0 as y ↓ 0 that satisfy that

ζ̌Gg(·, θ,W,B, L)2 ≤ D2
ζ,g, (θ,W,B, L) ∈ Θ0 × W × B × L, (g,G) ∈ G,

and for each pair (θ1,W1, B1, L1) and (θ2,W2, B2, L2) in Θ0 × W × B × L,

|ζ̌Gg(·, θ2,W2, B2, L2) − ζ̌Gg(·, θ1,W1, B1, L1)|

≤ D2
ζ,gh

ζ(|θ2 − θ1| + |W2 − W1| + |B2 − B1| + |L2 − L1|),

(g, G) ∈ G. It follows that Lemma A.4 applies to {ζ̌2
Gg : (g,G) ∈ G}. Thus,

{
(θ,W,B, L) �→ G−1

G∑
g=1

E[ζGg(·, θ,W,B, L)2] :

Θ × S
m × R

p×p × R
p → R

}
G∈N

is equicontinuous uniformly on Θ0 × W × B × L, and

{
G−1

G∑
g=1

ζGg(·, θ,W,B, L)2 − G−1

G∑
g=1

E[ζGg(·, θ,W,B, L)2]
}

G∈N

converges to zero uniformly in (θ, W,B, L) ∈ Θ0 × W × B × L in probability-P . Further,

{θ̂G − θ∗G}G∈N, {Â+
G − A∗

G
−1}G∈N, {ŴG − WG}G∈N, and {L̂G − L∗

G}G∈N converge to zero in
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probability-P by Assumption 3 and Lemmas B.3, B.8. It follows by Lemma A.4 that

{
V̂G − V̄G =G−1

G∑
g=1

ζGg(·, θ̂, ŴG, Â−1
G , L̂G)2

− G−1

G∑
g=1

E[ζGg(·, θ∗G,WG, A∗
G
−1, L∗

G)2]
}

G∈N

converges to zero in probability-P , and {V̄G}G∈N is bounded. Claim (a) therefore follows.

For (b), note that

|V̄G − VG| =

∣∣∣∣G−1

G∑
g=1

(Gng/NG)2(E[sGg1]
′WGE[sGg1])

2

∣∣∣∣.

Recall that if a sequence of random variables converges in the mean to zero, it also converges

in probability; and, further, if the squared sequence is uniformly integrable (in particular, if

the original sequence is uniformly bounded), the squared sequence converges in the mean to

zero. In our current problem, α∗
G, which is the average (Gng/NG)E[s∗Gg1]

′WGE[s∗Gg1] over the

first G groups (the mean taken in terms of the probability measure assigning probability 1/G

to each g), converges to zero as G → ∞, and {(Gng/NG)E[s∗Gg1]
′WGE[s∗Gg1] : (g, G) ∈ G} is

uniformly bounded, the average of (Gng/NG)2(E[s∗Gg1]
′WGE[s∗Gg1])

2 over the first G groups

also converges to zero. Thus, {|V̄G − VG|}G∈N converges to zero. It follows by (a) of the

current theorem that

|V̂G − VG| ≤ |V̂G − V̄G| + |V̄G − VG| → 0 in probability-P,

so that |V̂G − VG| → 0 in probability-P . Given this first result, we further have that

TG − G1/2α̂G

V
1/2
G

= (V̂
−1/2
G − V

−1/2
G )G1/2α̂G = oP (1),
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because G1/2α̂G = OP (1) by Theorem 3.1(b). It follows that

TG − G1/2α∗
G

V
1/2
G

= V
−1/2
G G1/2(α̂G − α∗

G) + oP (1).

The second result follows from this equality by the asymptotic equivalence lemma and The-

orem 3.1(b).

To prove (c), note that

G−1/2TG − V̄
1/2
G α∗

G → 0 in probability-P . (28)

by Theorems 3.1(a) and 3.2(a). Let c be an arbitrary real number. Then we have that for

each G ∈ N,

P [TG > c] = P [G−1/2TG − V̄
−1/2
G α∗

G > G−1/2c − V̄
−1/2
G α∗

G]

≥ P [G−1/2TG − V̄
−1/2
G α∗

G > G−1/2c − τ ],

where τ ≡ inf{V̄ −1/2
G α∗

G : G ∈ N} > 0 because {α∗
G}G∈N is assumed to be uniformly bounded,

and V̄G > VG is positive uniformly in G ∈ N by Assumption 4(e). Because G−1/2c < τ/2 for

almost all G ∈ N, we have that for almost all G ∈ N,

P [TG > c] ≥ P [G−1/2TG − V̄
−1/2
G α∗

G > −τ/2]

≥ P [|G−1/2TG − V̄
−1/2
G α∗

G| < τ/2].

Because the right-hand side of this equality converges to one by (28), the desired result

follows. �
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